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Abstract. The goal of cognitive neuroscience is to understand the the brain pro-
cesses that underlie cognitive function. These brain processes are studied by ex-
amining neural responses to experimental tasks and stimuli. While most experi-
ments are designed to isolate a single cognitive process, the resulting brain im-
ages often encode multiple processes simultaneously. Thus standard classifica-
tion methods are inappropriate for decoding cognitive processes. We propose a
multilabel classification approach for decoding, and present empirical evidence
that multilabel classification can accurately predict the set of cognitive processes
associated with an experimental contrast image.

1 Introduction

An important hypothesis in modern cognitive neuroscience is that brain function is de-
composable into a set of elementary cognitive processes - representing the basis set of
brain functions recruited for cognitive tasks [13]. For example, recognizing a face may
require the cognitive process of vision, working memory and retrieval, while the music
comprehension may require, in addition to the shared cognitive processes of working
memory and retrieval, additional cognitive processes of rhythm and intonation. Cog-
nitive neuroscientists and other researchers measure these processes in the laboratory
setting by developing experiments that allow (e.g., via cognitive subtraction) the iso-
lation of a specific cognitive process from other recruited processes. Unfortunately,
despite careful selection of the stimuli and control tasks, the measured brain function
often captures multiple cognitive processes simultaneously [8].

Functional magnetic resonance imaging (fMRI) has enabled the non-invasive mea-
surement of brain function in response to experimental stimuli at fine spatial scales.
From initial studies that used classifiers to discriminate between different classes of
visual objects [4] to more recent studies showing large scale classification across ex-
periments [11], decoding from brain images has become an important research tool [7].
Decoding performance can be used to test hypothesis about the cognitive content of the
brain images. Further, the classifier parameters can be used to localize predictive vox-
els [3], or select regions of interest for additional processing. In addition to the general
scientific utility of decoding, the specific application to cognitive processes may help
address additional scientific questions, such as which cognitive processes outlined in
the literature represent true differences in brain function, and which merely reflect the-
oretical distinctions [10]. Despite these potential insights, direct decoding of cognitive
processes from brain function has not been attempted before.
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We study the decoding of cognitive processes from brain function measured via
functional magnetic resonance imaging (fMRI) contrasts using a multilabel classifica-
tion approach. Multilabel classifiers are designed to solve classification problems where
each example may be associated with multiple processes, and are popular in several do-
mains such as image processing and text processing [14]. We focus on the subclass of
multilabel classification methods known as label decomposition methods [14], where
the multilabel classification problem is decomposed into multiple binary classification
problems. Our work is enabled by the recent availability of a large public fMRI database
(OpenFMRI?) [9] and a large cognitive ontology labeled by domain experts (Cognitive
Atlas*) [12]. Our results provide empirical evidence that the set of cognitive processes
associated with an experimental contrast can be accurately decoded.

Notation: We denote vectors by bold-face lower case letters x and matrices by bold-
face capital letters X. The set of real valued D dimensional vectors are denoted by R”.
Label sets are denoted by script capital letters S with cardinality |S].

2 Methods

Let x,, € R denote the n** brain volume with voxels collected into a real valued D
dimensional vector. The total number of brain volumes is represented by /N. Each brain
volume is associated with a set of process labels S,, = {s1, ... sk } chosen from the full
set of possible process labels £ = J,,_;  y Sn with [£| = L. Multilabel classification
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involves estimating a predictive mapping f : x,, — S,,. There are several approaches in
the literature for multilabel classification including label decomposition, label ranking,
and label projection methods [14]. We focus on label decomposition methods due to
their simplicity, scalability and ease of interpretation. Label decomposition methods
separate the multilabel classification task into a set of binary classification tasks. A
popular approach in this family is the One-Vs-All decomposition, where the multilabel
classification is decomposed into binary classification tasks. Each binary classification
model is trained to predict the presence or absence of each each label independently.

We experimented with the multilabel decomposition approach using the following
base classifiers: (i) [ regularized support vector machine (SVM) [2], (ii) [, regularized
logistic regression (Logistic) [1] , and I, regularized squared loss classifier (Ridge) [1].
Each sub-classifier was implemented using a linear model of the form f;(x,,) = wlT Xp
where w; € RP VI = 1...L is areal valued weight vector. In addition, we experi-
mented with a baseline multilabel classifier (Popularity) designed to approximate the
dataset label statistics. To this end, the set of predicted process labels were determined
based on prevalence in the training set. Specifically, the indicator denoting the presence
of each label was drawn independently from a Bernoulli distribution with probability
given by the fraction of examples in the training data containing that label.

3 Empirical Results

We compiled brain image data from the publicly available openfMRI database [9].
OpenfMRI contains pre-extracted z-statistic contrasts for each subject computed us-
ing a generalized linear model. This data extraction was implemented using the FMRIB
Software Library (FSL). Combining the whole brain data with the standard brain mask
resulted in D = 174, 264 extracted voxels. We extracted N = 479 contrast images as-
sociated with 26 contrasts in the database. Further details on data preprocessing may be
found in [9]. In addition to the brain volumes, we extracted a list of cognitive process
labels associated with each experimental contrast. The list was curated starting from
processes in the Cognitive Atlas [12] and refined by domain experts. The final set of
L = 22 cognitive process labels are provided in Table 1. It is clear from Fig. 1 that
some process labels are significantly more prevalent in the data than other process la-
bels. For example vision is more than 20 times more prevalent than spatial attention.
The data samples included an average of 3.5 process labels per example with a maxi-
mum of 9 process labels per example and a minimum of 1 process label per example.

We evaluated the models using (label) Accuracy, Precision, Recall, Hamming loss
and FIScore, metrics commonly applied for evaluating multilabel classification [14].
Let S,, represent the true process labels and Z,, represent the predicted process labels
associated with the n'" example. The metrics are computed as:

N
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Table 2. Mean (var) of Aggregated Performance Metrics. *- represents models where all metrics
are statistically significant (p < 1073) wrt. the permutation based null distribution for the model.

Accuracy Precision  Recall F1Score 1 - Hamming Loss

SVM* 0.43 (0.03) 0.53 (0.03) 0.68 (0.03) 0.51 (0.03) 0.79 (0.01)
Logistic* 0.44 (0.03) 0.53 (0.02) 0.68 (0.03) 0.52 (0.03) 0.79 (0.01)
Ridge*  0.34 (0.02) 0.47 (0.02) 0.37 (0.02) 0.39 (0.02) 0.91 (0.00)
Popularity 0.12 (0.01) 0.21 (0.02) 0.18 (0.03) 0.18 (0.02) 0.76 (0.01)

where A © B represents the symmetric difference of set A and 5. Label Accuracy
measures the average fraction of process labels that are predicted correctly with respect
to the cardinality of the union of true and predicted process labels. Precision measures
the fraction of predicted process labels that are relevant, and Recall measures the frac-
tion of relevant process labels that are predicted. The F1Score combines Precision and
Recall into a single score. Higher scores indicate superior performance for Accuracy,
Precision, Recall and F1Score, and the best possible score is 1. The Hamming Loss
directly penalizes both false positives and false negatives equally. Lower cores indicate
superior performance for Hamming Loss, and the best possible score is 0. To simplify
comparison with other scores, we present results as 1 - Hamming Loss. Further details
on the metrics are available in [14].

All models were trained using 5-fold double loop cross validation. The inner loop
was used for parameter selection, and the outer loop was used to estimate the general-
ization performance. The /5 regularization parameter for all models was selected from
the set {102, 10*2,10%,...,1072°,10~3}. We used the Hamming Loss metric for pa-
rameter selection. We evaluated the use of the other metrics for parameter selection
and found the results to be qualitatively equivalent. In addition to performance compar-
isons, we were interested in evaluating the statistical significance of the results. Hence,
we computed an empirical null distribution by randomly permuting the process labels
1000 times and retraining the model. Note that the empirical null distribution was es-
timated separately for each trained model, so the presented statistical significance is
model dependent. We computed statistical significance using a threshold of p = 1073,
suggesting high confidence in rejecting the hypothesis that the performance scores were
the result of chance.

We found that the performance of SVM and Logistic were almost identical in ag-
gregate (Table 2). Ridge was comparable to SVM and Logistic in terms of Precision,
but performed worse in terms of Accuracy and Recall. On the other hand, Ridge signif-
icantly outperformed all other models in terms of Hamming Loss. To investigate these
observations further, we computed per-label performance metrics as shown in Fig. 2.
As expected, the overall trend of most of the metrics was correlated with the label im-
balance i.e. more common process labels were easier to predict. Our results show that
Ridge was the most accurate model for prevalent process labels. However, Ridge was
not accurate for rare process labels. Surprisingly, some cognitive process labels such as
Speech were well predicted by Ridge despite their rarity.

To investigate any systematic bias in classifier mistakes, we computed the classifier
confusion matrices as shown in Fig. 3 (only confusion matrices for Ridge and Logistic
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Fig. 2. Model Performance per Cognitive Process Label. For metrics other than Hamming Loss,
label prevalence is highly correlated with classification performance. Ridge was especially accu-
rate for the most prevalent process labels, but was relatively less accurate for rare process labels.
The cognitive process labels are coded as capital letters A, ...,V (see Table 1). Figure is best
viewed in color.

are shown due to limited space). Each row represents the average fraction of examples
where the cognitive process label associated with the row was predicted as the cognitive
process label associated with the column. Across process labels, it was clear that label-
ing mistakes were systematically in the direction of more prevalent process labels i.e.
the confusion matrices are brighter towards the left side. The cooler color in Ridge was
mostly due to the high proportion of mistakes made for Spatial Attention - the rarest
process label. Examining the right side of the confusion matrices, we note that Logis-
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Fig. 3. Avg. of Normalized Confusion Matrices for Logistic and Ridge. The true process labels
are along the row, and the predicted process labels are along the columns. Each row represents
the average fraction of examples where the cognitive process label associated with the row was
predicted as the cognitive process label associated with the column. The matrix entries are scaled
x10? to improve readability. Cognitive process labels are coded as capital letters A, ...,V (see
Table 1). Figure is best viewed in color.

tic sometimes classified prevalent process label examples as rare process labels, while
Ridge rarely made such mistakes at the expense of low accuracy for rare process labels.
Recall that the cost of ignoring rare process labels is relatively low for the Hamming
Loss as compared to the other losses. This explains the relatively high performance
of Ridge for the Hamming Loss. The empirical results suggest that a multi-classifier
approach combining the advantages of the different classifiers may be effective. For
example, Ridge could be used for predicting the most prevalent process labels, and
combined with Logistic for predicting rare cognitive process labels.

4 Conclusion

The decoding of cognitive processes is an important first step towards evaluating and
verifying the latent processes the brain employs to complete various tasks. We have pro-
vided experimental evidence that cognitive processes can be accurately decoded from
brain function using a multilabel classification approach. We also studied some of the
trade-offs that arise due to the imbalance of the process labels. We intend to continue
further verification of the decoding performance by evaluating various multilabel classi-
fication methods in the literature [14]. This will also aid in understanding the trade-offs
between different methods in the specific application to neuroimaging data. In addition,
we plan to incorporate structured regularizers such as the total variation regularization
[5], or Bayesian models for structured sparsity [6] that may help to localize the sources
of classification performance, improving the interpretability of the results.
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